Course11

1

Tuesday, December 14, 2021 5:08 PM

Shen
$$\exists z_{0} \in \mathbb{C}$$
 s.t. $p(z_{0}) = 0$.
Proof: Assume that $p(z) \pm 0$, $\forall z \in \mathbb{C}$. Zet $f = \frac{1}{p} eff(\mathbb{C})$.
Isouf $f(z) = \lim_{z \to \infty} \frac{1}{z(a_{1} + a_{-1}(\frac{1}{2} + \dots + a_{0}(\frac{1}{2}))} = 0$
 $= 35 \ge 0$ st. $|f(z)| \le 4$, $\forall (z_{1}) \le 0$
 $f is out. on U(0, S) = 1$ is bounded on $U(0, S) = B$ is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 $= 1p is constant and
 = 1p is constant and$$$

Moreover,
$$S^{(n)}(z) = \sum_{i=1}^{n} a_{i} \cdots (a-k+i) (z-k)^{n-k}$$
, $z \in Hapf, kernet, interval (z-k), $y \in N$, $y \in N$,$

1 L