A criterion for holomorphic functions to be constant Recall: DEC is a dornain, if Disopen and converted. V feX(G), G \subseteq \oplus open =) feC(G) (condinuous on G). (T1) Let \$ \$D C C be a domain and fe'H(D), f=u+iv. The the following are equivalent: i) f is constant on S. $ii)f' \equiv 0$ on 0. in) Ref is constant on D. T) If is constant on D. Proof: (i) = (i), (ii), (iv), (v) is clear. ii) =) i) Assume that f =0 on D. Fix ≥0 eD and E=[2∈D: f(2)=f(20)]. · E is closed in D: if (Zw) new is in E st. Z=lim zn eD, Hren $z \in E$, lecause $f(z_0) = f(z_0) = f(z_0)$ • En open in D: Let a e E. Jince a e D, Fr>0 s.t. $U(a, n) \subseteq D$. Let $b \in U(a, n)$.

Then $[a, b] = \{(a-t)a + tb : telo, n\} \subseteq U(a, n)$. Let q: [0,1] - D, g(t) = (1-t) a+ th, t= [0,1]. 2 is differentiable at any to e (e,1) and g([0,1]) = Sa, bJ. Let g= fog. For t, to e [0, 1], t+to: $\frac{g(t) - g(t_0)}{t - t_0} = \frac{f(2(t_0)) - f(2(t_0))}{g(t_0) - g(t_0)} \cdot \frac{g(t_0) - g(t_0)}{t - t_0}.$ $\frac{g(t) - g(t_0)}{t - t_0} = \frac{f(2(t_0)) - f(2(t_0))}{t - t_0} \cdot \frac{g(t_0) - g(t_0)}{t - t_0}.$ $\frac{g(t) - g(t_0)}{t - t_0} = \frac{f(2(t_0)) - f(2(t_0))}{t - t_0} \cdot \frac{g(t_0) - g(t_0)}{t - t_0}.$ $\frac{g(t) - g(t_0)}{t - t_0} = \frac{g(t_0) - g(t_0)}{t - t_0} \cdot \frac{g(t_0) - g(t_0)}{t - t_0}.$ $\frac{g(t) - g(t_0)}{t - t_0} = \frac{g(t_0) - g(t_0)}{t - t_0} \cdot \frac{g(t_0) - g(t_0)}{t - t_0}.$ $\frac{g(t) - g(t_0)}{t - t_0} = \frac{g(t_0) - g(t_0)}{t - t_0} \cdot \frac{g(t_0) - g(t_0)}{t - t_0}.$ $\frac{g(t) - g(t_0)}{t - t_0} = \frac{g(t_0) - g(t_0)}{t - t_0} \cdot \frac{g(t_0)}{t - t_0}.$ =) $g' \equiv 0$ on (0,1) = g is constant on [0,1]=> g(0) = g(1) => f(a) = f(b) } => $f(b) = f(20) => b \in E$.

Yo, $U(a, n) \in E$. We deduce that E is open in D.

Exist open and closed in D = E = A or E = A? E = A = A = A = A E = A = A = A = A E = A = A = A = A E = A = A = A E = A = A = A E = A E ==) E=b=) fix constant on b. [iii)=>i) Assume that u=Ref xs constant on D. Then $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} = 0$ on D. fell() (Sandy-) \\
\[
\lambda_{\text{X}} = \frac{\delta_{\text{Y}}}{\delta_{\text{X}}} = \frac{\delta_{\text{Y}}} = \frac{\delta_{\text{Y}}}{\delta_{\text{X}}} $=) \frac{3x}{3x} = \frac{3y}{3x} = 0 \text{ on } y$ =) $f' = \frac{\partial f}{\partial x} = \frac{\partial n}{\partial x} + i\frac{\partial V}{\partial x} = 0$ on 0 = 0 f is constant on 0. [iv] => i) is proved as above. · coo. Let z=xtizeD. = the above lin. homogeneous sys. has a migne sol. $(\frac{34}{52}(E, Y), \frac{34}{52}(E, Y)) = (0, 0)$. $J_{\sigma}, l = \frac{\partial l}{\partial x} = 0$ $\stackrel{(i)=(i)}{=}$ l is constant on D. [I] Yet D= C be a Sorrain and fa T((1)).

If $f(D) \subseteq R$ or $f(D) \subseteq iR$, then f is combant on D.

Proof: $f(D) \subseteq R \Rightarrow Imf = 0$ [I] f is combant on D.

Lid $f(D) \subseteq R \Rightarrow Imf = 0$ [II] f is combant on D.

Harmonic functions (D1) Lt G = C be open. n: C -> PR is harmonic, If $n \in C^2(G)$ and $\Delta n(x,y) = \frac{\partial^2 n}{\partial x^2}(x,y) + \frac{\partial^2 n}{\partial y^2}(x,y) = 0$, (the Laplace equation) $f(x) \in C$. Then n = Ref, n = Im f are harmonic on G. Proof: I fe Il(G) => n, v ∈ Coo(G) (this will be proved in a future course). Q=V = $\frac{gE}{g\pi} = \frac{gA}{g\pi}$ $\frac{gA}{g\pi} = -\frac{gE}{g\pi}$ $=) D W = \frac{2 \pi}{3 x_{3}} + \frac{2 \pi}{3 x_{3}} = \frac{3 x}{3 x} \left(\frac{3 x}{3 x}\right) + \frac{3 x}{3 x} \left(\frac{3 x}{3 x}\right)$ $= \frac{\partial}{\partial x} \left(\frac{\partial Y}{\partial y} \right) + \frac{\partial}{\partial y} \left(\frac{\partial Y}{\partial x} \right)$ $= \frac{\partial^{2} V}{\partial x} \left(\frac{\partial Y}{\partial y} \right) + \frac{\partial^{2} V}{\partial y} \left(\frac{\partial^{2} V}{\partial x} \right)$ $= \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial y} \right) + \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial x} \right)$ $= \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial y} \right) + \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial x} \right)$ $= \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial x} \right) + \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial x} \right)$ $= \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial x} \right) + \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial x} \right)$ $= \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial x} \right) + \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial x} \right)$ $= \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial x} \right) + \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial x} \right)$ $= \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial x} \right) + \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial x} \right)$ $= \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial x} \right) + \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial x} \right)$ $= \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial x} \right) + \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial x} \right)$ $= \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial x} \right) + \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial x} \right)$ $= \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial x} \right) + \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial x} \right)$ $= \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial x} \right) + \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial x} \right)$ $= \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial x} \right) + \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial x} \right)$ $= \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial x} \right) + \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial x} \right)$ $= \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial x} \right) + \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial x} \right)$ $= \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial x} \right) + \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial x} \right)$ $= \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial x} \right) + \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial x} \right)$ $= \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial x} \right) + \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial x} \right)$ $= \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial x} \right) + \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial x} \right)$ $= \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial x} \right)$ $= \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial x} \right)$ $= \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial x} \right)$ $= \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial x} \right)$ $= \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial x} \right)$ $= \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial x} \right)$ $= \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial x} \right)$ $= \frac{\partial^{2} V}{\partial x} \left(\frac{\partial^{2} V}{\partial x} \right)$ $= \frac{\partial^{2}$ =) $\mu = || \ell ||$, where $f(z) = \ell^{2} = \ell^{2} (\omega_{y} + i \omega_{y})$, Z=Xtiye C => m is harmonic on C. r= Im f is harmonic on C. (?) If GEC is open, n:G>R is harmonic on G, then I fell(G) st. n=Ref? Let $G \subseteq C$ be open and P, $Q:G \rightarrow R$ be s.t. $P,Q \in C'(G)$. Then: w = P dx + Q dy is alled a (linear) differential form of class C' on G. HZCG: W(2) = P(2) dx + Q(2) dy is a linear function from \mathbb{R}' to \mathbb{R} , where $dx(x,y) = x, dy(x,y) = y,(x,y) \in \mathbb{R}^2$.

 ω is . losed, if $\frac{2Q}{2F} = \frac{2P}{2F}$ on C; exact, if $\frac{2Q}{2F} = \frac{2P}{2F}$ on C; $P = \frac{2P}{2F}$, $Q = \frac{2P}{2F}$ (i.e. $df = \omega$).