Course 7

Monday, November 15, 2021 6:30 PM

Homonic functions
P(Poincaré) fet D = R² be a stabilize domain wink to e)
and w be a differential form of dens C' on D.
Then: w is closed as w is exact.
Tal Zit D = C be a starlike domain wint. 20 eD and
n: D - R be hormonic. Then I fe T(D) sit u = Ref.
Proof: Via look for v: D - R, ve C²(D) sit. mend v satisfy.
He backup - Riemann sys. on D:
{ 34 = 34 on D, rince this implies f=4+iv e H(D)
34 = 34 on D, rince this implies f=4+iv e H(D)
34 = 37 on D, rince this implies f=4+iv e H(D)
34 = 37 on D, rince this implies f=4+iv e H(D)
34 = 37 on D, rince this implies f=4+iv e H(D)
34 = 37 on D = 1 we C²(B) = 1 w = Pdx + Ddy is
a diff. form of class C' on D.
w is closed:
$$\frac{32}{34} = \frac{32}{34}$$
 on D (=) $\frac{1}{34} (\frac{34}{34}) = \frac{1}{34} (\frac{24}{34})$ on D
(=) $\frac{3}{34} + \frac{3}{34} = 0$ on D
(=) $\frac{$

Proof: (I) => 3 g = H(1) s.t.
$$v = 2e_{g}$$
 - orm f.
It f = ig . f c H(1) s.t. $v = 2e_{g}$.
It complex multivalued togarithm
Let $v \in C^{*}$. The eq. $e^{*} = w$ has infinitely many
solutions: $e^{*} = w$ $e^{*} = w$ has infinitely many
solutions: $e^{*} = w$ $e^{*} = w$ has infinitely many
 $e^{*} = 1w > 1e^{*}$.
 $e^{*} = 1w > 1e^{*}$ $e^{*} (say + inw +) = w (say + 2hi)$,
 $g = argw + 2hiv$, $h = 2^{*} = 2w = \ln 1w + i (argw + 2hi)$,
 $g = argw + 2hiv$, $h = 2^{*} = 2w = \ln 1w + i (argw + 2hiv)$,
 $g = e^{*} = 1w + 2hiv$, $h = 2^{*} = 2w = \ln 1w + i (argw + 2hiv)$,
 $g = e^{*} = 1w + 2hiv$, $h = 2^{*} = 2 + 2h = 2h + 2hiv$.
 $e^{*} = 1w + 2hiv$, $h = 2^{*} = 2 + 2hiv$.
 $f = 1w + 2hiv$, $h = 2^{*} = 2 + 2hiv$.
 $f = 1w + 2hiv$, $h = 2^{*} = 2 + 2hiv$.
 $f = 1w + 2hiv$, $h = 2^{*} = 1 + 2hiv$.
 $f = 1w + 2hiv$, $h = 2^{*} = 1 + 2hiv$.
 $f = 1w + 2hiv$, $h = 2 + 2hiv$.
 $f = 1w + 2hiv$.
 $f = 1$

Courses Page 4